Search results for "vector [form factor]"
showing 10 items of 770 documents
Sequential Learning with LS-SVM for Large-Scale Data Sets
2006
We present a subspace-based variant of LS-SVMs (i.e. regularization networks) that sequentially processes the data and is hence especially suited for online learning tasks. The algorithm works by selecting from the data set a small subset of basis functions that is subsequently used to approximate the full kernel on arbitrary points. This subset is identified online from the data stream. We improve upon existing approaches (esp. the kernel recursive least squares algorithm) by proposing a new, supervised criterion for the selection of the relevant basis functions that takes into account the approximation error incurred from approximating the kernel as well as the reduction of the cost in th…
On the time function of the Dulac map for families of meromorphic vector fields
2003
Given an analytic family of vector fields in Bbb R2 having a saddle point, we study the asymptotic development of the time function along the union of the two separatrices. We obtain a result (depending uniformly on the parameters) which we apply to investigate the bifurcation of critical periods of quadratic centres.
Diffractive vector meson production in ultraperipheral heavy ion collisions from the Color Glass Condensate
2014
We compute cross sections for incoherent and coherent diffractive J/$\Psi$ and $\Psi(2S)$ production in ultraperipheral heavy ion collisions. The dipole models used in these calculations are obtained by fitting the HERA deep inelastic scattering data and compared with available electron-proton diffraction measurements. We obtain a reasonably good description of the available ALICE data. We find that the normalization of the ultraperipheral cross section has large model dependence, but the rapidity dependence is more tightly constrained.
A Weitzenböck formula for the damped Ornstein–Uhlenbeck operator in adapted differential geometry
2001
Abstract On the Riemannian path space we consider the Ornstein–Uhlenbeck operator associated to the Dirichlet form E (f,g)=E〈 ∇ f, ∇ g〉 H , where ∇ is the damped gradient and 〈·,·〉 H the scalar product of the Cameron–Martin space H . We prove a corresponding Weitzenbock formula restricted to adapted vector fileds: the Ricci-tensor is shown to be equal to the identity.
Connected components in the space of composition operators onH∞ functions of many variables
2003
LetE be a complex Banach space with open unit ballBe. The structure of the space of composition operators on the Banach algebra H∞, of bounded analytic functions onBe with the uniform topology, is studied. We prove that the composition operators arising from mappings whose range lies strictly insideBe form a path connected component. WhenE is a Hilbert space or aCo(X)- space, the path connected components are shown to be the open balls of radius 2.
Generic unfoldings with the same bifurcation diagram which are not (C0, C0)— equivalent
1997
A note on the Banach space of preregular maps
2011
The aim of this paper is to give simple proofs for Jeurnink's characterizations of preregular maps in terms of Θ-maps acting between Banach lattices. For Banach lattices E and F, we achieve our goal by considering the space Lβ(E, F) of all those linear maps T: E → F for which there exists a constant K such that {double pipe}Vn i=1 {pipe}Txi{pipe} ≤ K {double pipe}Vn i=1{pipe}xi for all finite sequences x1, ..., xn e{open}E. We show that, if Lβ(E; F), and the spaces L Θ (E; F) of Θ -map and Lpr(E; F) of preregular maps are respectively endowed with their canonical norms, then they are identical Banach spaces
An integral for a banach valued function
2009
Abstract Using partitions of the unity ((PU)-partition), a new definition of an integral is given for a function f : [a, b] → X, where X is a Banach space, and it is proved that this integral is equivalent to the Bochner integral.
General duality in vector optimization
1993
Vector minimization of a relation F valued in an ordered vector space under a constraint A consists in finding x 0 ∊ A w,0 ∊ Fx$0 such that w,0 is minimal in FA. To a family of vector minimization problemsminimize , one associates a Lagrange relation where ξ belongs to an arbitrary class Ξ of mappings, the main purpose being to recover solutions of the original problem from the vector minimization of the Lagrange relation for an appropriate ξ. This ξ turns out to be a solution of a dual vector maximization problem. Characterizations of exact and approximate duality in terms of vector (generalized with respect to Ξ) convexity and subdifferentiability are given. They extend the theory existin…
The mixed general routing polyhedron
2003
[EN] In Arc Routing Problems, ARPs, the aim is to find on a graph a minimum cost traversal satisfying some conditions related to the links of the graph. Due to restrictions to traverse some streets in a specified way, most applications of ARPs must be modeled with a mixed graph. Although several exact algorithms have been proposed, no polyhedral investigations have been done for ARPs on a mixed graph. In this paper we deal with the Mixed General Routing Problem which consists of finding a minimum cost traversal of a given link subset and a given vertex subset of a mixed graph. A formulation is given that uses only one variable for each link (edge or arc) of the graph. Some properties of the…